مقاله پژوهشی
بررسی و مقایسه زمان نیت پتانسیل های برانگیخته ثابت شنوایی با استفاده از سه Ziarani، Kalman روش

دکتر علیرضا مهری ۱- دکتر داریوش شهریاری گهری‌پور۲- لیا قاندی ۳

۱ استادیار کوره فیزیک و مهندسی فیزیک دانشگاه علوم پزشکی اصفهان، ایران
۲ دانشیار کوره فیزیک و مهندسی فیزیک دانشگاه علوم پزشکی اصفهان، ایران
۳ دانشجو کارشناسی ارشد مهندسی فیزیک دانشگاه علوم پزشکی اصفهان، ایران

چکیده
زمینه و هدف: ارزیابی سلامت شنوایی در افرادی که قادر به همکاری برای انجام آزمون شنوایی نیستند، به خصوص کودکان زیر دو سال به عنوان یک چالش در زمان طولانی محسوب می‌شود. این همچنین اگزیکس لایه‌ای برانگیخته ثابت شنوایی یکی از بهترین روش‌های جهت آزمون شنوایی به صورت ابجکتیو ولی زمان طولانی آزمون در این روش استفاده گویند. این تونسیل در زمان نیت به شدت به سیستم الکتروسیستمیک آبیه می‌شود، بنابراین جهت استخراج آن‌ها از روی برداشت سیگنال متناسی استفاده می‌شود. هدف از این مطالعه بررسی و مقایسه زمان نیت پتانسیل‌های برانگیخته ثابت شنوایی با استفاده از روش Ziarani Kalman و قدمی‌بود بررسی شد.

روش پژوهشی: با توجه به مشخصات این سیگنال در این پژوهش از دو روش تطبیقی جهت استخراج پتانسیل‌های برانگیخته ثابت شنوایی کار گرفته شد. Kalman روش اول و روش تطبیقی غیرخطی Ziarani روش دوم و روش دوم فیلتر ارتقایاتی. نتیجه‌گیری: در این پژوهش عامیانه مناسب‌ترین نیت روش پژوهشی کالمن نسبت به روش قدمی (2/1) بوده و در روش فیلتر ارتقایاتی Ziarani نسبت به روش پژوهشی کالمن (3/1) بیشتری بوده است. Kalman

نتیجه‌گیری: نظر سیستم‌های دو روش جهت استخراج پتانسیل‌های برانگیخته ثابت شنوایی از بین سه روش فیلتر، فیلتر ارتقایاتی بهتر می‌باشد.

واژگان کلیدی: ارزیابی سلامت شنوایی، پتانسیل‌های برانگیخته ثابت شنوایی، زیارانی، فیلتر کالمن

مقدمه
از روش‌های شنوایی در افرادی که قادر به همکاری برای انجام آزمون شنوایی نیستند، به خصوص کودکان زیر دو سال به عنوان یک چالش در زمان طولانی محسوب می‌شود. این همچنین اگزیکس لایه‌ای برانگیخته ثابت شنوایی یکی از بهترین روش‌های جهت استخراج آن‌ها از روی برداشت سیگنال متناسی استفاده می‌شود. هدف از این مطالعه بررسی و مقایسه زمان نیت پتانسیل‌های برانگیخته ثابت شنوایی با استفاده از روش Ziarani Kalman و قدمی‌بود بررسی شد.

روش پژوهشی: با توجه به مشخصات این سیگنال در این پژوهش از دو روش تطبیقی جهت استخراج پتانسیل‌های برانگیخته ثابت شنوایی کار گرفته شد. Kalman روش اول و روش تطبیقی غیرخطی Ziarani روش دوم و روش دوم فیلتر ارتقایاتی. نتیجه‌گیری: در این پژوهش عامیانه مناسب‌ترین نیت روش پژوهشی کالمن نسبت به روش قدمی (2/1) بوده و در روش فیلتر ارتقایاتی Ziarani نسبت به روش پژوهشی کالمن (3/1) بیشتری بوده است. Kalman

نتیجه‌گیری: نظر سیستم‌های دو روش جهت استخراج پتانسیل‌های برانگیخته ثابت شنوایی از بین سه روش فیلتر، فیلتر ارتقایاتی بهتر می‌باشد.

واژگان کلیدی: ارزیابی سلامت شنوایی، پتانسیل‌های برانگیخته ثابت شنوایی، زیارانی، فیلتر کالمن

M. E-mail shahbazi24@yahoo.com
روش بررسی

روشی که تا کنون برای استخراج پانتاسیل های برپایگی‌شده تابت شنوایی از سیگنال نیاز بهیزده استفاده شده است، بی‌میانی میانگین گری روش پنتاسیل از زمان جهت افزایش نسبت سیگنال به نیز در تحلیل درجه فرکانس b برنامه زیارانی روش تطبیقی غیرخطی استفاده شده است. در این ۹۰ هرتز بالاتر شده و به صورت یک مجموعه واحد قدرت اعملی می- شوند (۵ و ۶).

جدول ۱- امواج صوتی تحریک و فرکانس‌های افراد اعمال شده

<table>
<thead>
<tr>
<th>فرکانس اهلی (Hz)</th>
<th>فرکانس حامل (Hz)</th>
<th>آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰/۰۸۸</td>
<td>۷۵۰</td>
<td>چپ</td>
</tr>
<tr>
<td>۱۸/۱۶۲</td>
<td>۱۰۰۰</td>
<td>راست</td>
</tr>
<tr>
<td>۱۸/۹۱۲</td>
<td>۲۰۰۰</td>
<td>راست</td>
</tr>
<tr>
<td>۹/۱/۷۷</td>
<td>۴۰۰۰</td>
<td>راست</td>
</tr>
</tbody>
</table>

برنامه a

برنامه a جهت مشخص کردن زمان لازم برای استخراج پانتاسیل های برپایگی‌شده تابت شنوایی از داده‌های الپیکت ورودی با استفاده از روش Picton استفاده شده است. در برنامه شدن داده‌های دیجیتال با فرکانس نمونه‌برداری ۱۰۰۰ هرتز می- باشد. داده‌های ورودی در زمانی که داده‌های نمونه‌برداری روز با پیش‌بینی نسبت به تعداد از نقاط، یک دسته داده بطول زمانی ۲/۸۷، ثانیه به دست می‌آید که حاصل ۱۶۸۳۶ نقطه داده است. در این مراحل روز من از این داده تبدیل فرآیند آن (۶) در جزیی فرکانس‌ بصورت مجدد

برنامه b

برنامه b روش تطبیقی غیرخطی استفاده شده است. در این ۸۰ هرتز بالاتر شده و به صورت یک مجموعه واحد قدرت اعملی می- شوند (۹ و ۱۰).

برنامه c

برنامه c به دلیل دقت بالا در کنترل زمان لازم برای استخراج پانتاسیل های برپایگی‌شده تابت شنوایی از داده‌های الپیکت ورودی با استفاده از روش نسبت به تعداد از نقاط، یک دسته داده بطول زمانی ۲/۸۷، ثانیه به دست می‌آید که حاصل ۱۶۸۳۶ نقطه داده است. در این مراحل روز من از این داده تبدیل فرآیند آن (۶) در جزیی فرکانس‌ بصورت مجدد

برنامه d

برنامه d به دلیل دقت بالا در کنترل زمان لازم برای استخراج پانتاسیل های برپایگی‌شده تابت شنوایی از داده‌های الپیکت ورودی با استفاده از روش نسبت به تعداد از نقاط، یک دسته داده بطول زمانی ۲/۸۷، ثانیه به دست می‌آید که حاصل ۱۶۸۳۶ نقطه داده است. در این مراحل روز من از این داده تبدیل فرآیند آن (۶) در جزیی فرکانس‌ بصورت مجدد

برنامه e

برنامه e به دلیل دقت بالا در کنترل زمان لازم برای استخراج پانتاسیل های برپایگی‌شده تابت شنوایی از داده‌های الپیکت ورودی با استفاده از روش نسبت به تعداد از نقاط، یک دسته داده بطول زمانی ۲/۸۷، ثانیه به دست می‌آید که حاصل ۱۶۸۳۶ نقطه داده است. در این مراحل روز من از این داده تبدیل فرآیند آن (۶) در جزیی فرکانس‌ بصورت مجدد

نحوه سیگنال مناسب استفاده شود (۶)، اگر در اپراتور برای استخراج این پانتاسیل های برپایگی‌شده تابت شنوایی از داده‌های الپیکت ورودی با استفاده از روش نسبت به تعداد از نقاط، یک دسته داده بطول زمانی ۲/۸۷، ثانیه به دست می‌آید که حاصل ۱۶۸۳۶ نقطه داده است. در این مراحل روز من از این داده تبدیل فرآیند آن (۶) در جزیی فرکانس‌ بصورت مجدد

شโหس حسی مبتنی - دانشگاه علوم پزشکی تهران - دوره ۱۶، شماره ۱، ۱۳۸۹
در این مدل تهیه شده که A_0 دامنه جزء سیستم، $f(t)$ فاز اولیه جزء سیستم و $u(t)$ و $\delta(t)$ می‌باشند. در این الگوریتم این است که سیگنال ورودی $u(t)$ تعیین قابل قبولی از $u_0(t)$ به دست آید. این تعیین $y(t)$ نامیده خواهد شد.

با توجه به این دانش اولیه که $y(t)$ یک سیگنال سینوسی است، می‌توان آن را به صورت زیر نمایش داد که شامل $\phi(t)$ و $\omega(t)$ و $A(t)$ و $\Theta(t)$ می‌باشد، این یک رابطه به ترتیب تخمین دانه، فرکانس و فاز کلی سیستم هستند.

$$y(t) = A(t) \sin(\phi(t))$$

$$\phi(t) = \omega(t) t + \delta(t)$$

با حفظ کردن تابع هزینه، کمترین مربعات خط به دست خواهد آمد.

$$J(t, \Theta) = \frac{1}{2} \left[u(t) - y(t, \Theta) \right]^2 + \frac{1}{2} \epsilon^2(t)$$

$$\Theta(t) = \left[A(t) \phi(t) \omega(t) \right]$$

بردار پارامترها شامل دانه، فاز و فرکانس Θ به ترتیب می‌باشد، فاز و فرکانس تعیین هستند. روند فوق به عنوان برنامه Simulink Matlab یاد شود.

برنامه c

برنامه c همان روش فیلتر ارتفاع افتته که $u(t)$ به دست می‌آید.

در فیلتر ساده کالمن فرض می‌شود که بردار X در فضای n پارامترهای دامنه و بردار Z در فضای m پارامترهای انداره زیری شده و بردار U ورودی کنترلپذیر سیستم (در صورت وجود) تعیین می‌شود. مدل ماتریسی این رابطه خالص سیستم در زمان حال گذشته و نیز رابطه خالص سیستم با مقدار انداره‌گیری شده را نمایش می‌دهد.

$$X_k = AX_{k-1} + BU_{k} + w_k$$

$$Z_k = HX_k + v_k$$

در نتیجه می‌باشد که $X(t)$ یک فرکانس و $\Theta(t)$ متغیر موهومی می‌باشد.

$$(\text{Discrete Fourier Transform: DFT})$$

توجه به استفاده از الگوریتم تبدیل سریع Fourier Transform: FFT) فرخیزه است. قابل محاسبه است. یکی از فرضیه‌های اولیه در محاسبه تبدیل فوریه یک سیگنال و استفاده از روش برای محاسبه تبدیل فوریه این است که سیگنال مورد نظر یک سیگنال ایستا است. مقدار تبدیل فوریه به دست آمده در فرکانس تبدیل مورد نظر با مقادیر 120 نقطه فرکانس هسیسیاک و 60 نقطه فرکانس بالاتر و 60 نقطه فرکانس پایینتر (به زبان فارسی‌کلیه فرکانس‌ها تبدیل) مقایسه می‌شود. در صورتی که مقدار دانه تبدیل فوریه در فرکانس مورد نظر با احتمال بیشتر از 20% زیر نتیجه مستقل محسومات مثبت باشد، پایش می‌گردد در نظر گرفته می‌شود. تعداد قطعات داده 13874 که نیایگی بروی آن انجام شده است. رشته به پایش مطابق افزایش می‌یابد با این که تا تمام شدن داده، پاپش مبنا در فرکانس مورد نظر احتمال می‌شود.
کلمه ای در این مجموعه معادلات در هر نقطه یک تقریب نهایی را به پایان می‌رساند. این تقریب به عنوان بازگشتی Kalman ساده برای سیستمهایی که معادلات آنها به صورت خطي بیان می‌شود، قابل استفاده است. اگر معادلات سیستم به صورت غیرخطی بیان شود، با به کارگیری یک تقریب خطي با استفاده از سری تیلور در نقطه کار می‌توان از فیلتر Kalman جهت تخمین حالات سیستمهای غیرخطی استفاده کرد. در حالی که معادلات بالا به صورت زیر در می‌آید:

\[X_k = f(X_{k-1}, U_k, W_k) \]
\[Z_k = h(X_k, V_k) \]

در این حالت معادلات برای بخش پیشینی در مرحله \(k \) به صورت زیر در می‌آید:

\[\hat{X}_{k|k-1} = f(\hat{X}_{k-1|k-1}, U_k, 0) \]
\[P_{k|k-1} = A_k P_{k-1|k-1} A_k^T + W_k Q W_k^T \]

و معادلات برای بخش تصحيح مرحله \(k \) به صورت زیر می‌باشد:

\[K_k = P_{k|k-1} H_k (H_k P_{k|k-1} H_k^T + V_k R_k V_k^T)^{-1} \]
\[\hat{X}_k = \hat{X}_{k|k-1} + K_k (Z_k - h(\hat{X}_{k|k-1}, 0)) \]
\[P_{k|k} = (1 - K_k H) P_{k|k-1} \]

که در معادلات بالا، ماتریس‌های ماتریس‌های ه‌و‌و یا به عنوان بازگشتی خطي، ارائه داده‌های این مسأله است که در هر مرحله (در هر مرحله \(k \)) استفاده از ماتریس‌های مقدار

شکل 1- نمایش قسمتی از یکی از سیگنال‌ها در حوزه زمان

دانشگاه علوم پزشکی تهران - دوره 16 شماره 1

1389
شکل 2- نمایش طیف حاصل از برنامه a برای سیگنال شکل 1 بعد از میانگین گیری روی 7 باره زمانی 16/384 ثانیه‌ای

شکل 3- نمایش فرکانس و دامنه استخراج شده در برنامه a برای سیگنال شکل 1 برای فرکانس 84/961 هرتز

شکل 4- نمایش فرکانس و دامنه استخراج شده در برنامه a برای سیگنال شکل 1 برای فرکانس 84/961 هرتز
بحث
همچنانه، از روی جدول ۲ و شکل‌های ۲ و ۳ مشاهده می‌شود مناسب‌ترین روش جهت استخراج پتانسیل‌های برانگیخته تاثیر شنوایی از بین سه روش به کار رفته، روش فیلتر Kalman ارتباطات این باشند. چرا که در این روش زمان نسبت به دو روش دیگر کوتاه‌تر بوده و نیز حاصل شده نیز برتری ندانست.

نتیجه‌گیری

با توجه به حجم محاسبات، میزان حافظه لازم و زمان به Kalman متوسط استخراج سیگنال در روش فیلتر ارتباطات به نظر می‌رسد که ساخت دستگاهی شامل یک محرک صوتی برای ایجاد پتانسیل‌های برانگیخته تاثیر شنوایی و گیرنده و برداشته کننده با استفاده از این روش با هزینه کم و حجم کم می‌باشد.

جدول ۲- حداکثر زمان لازم (بر حسب ثانیه) برای استخراج پتانسیل‌های برانگیخته تاثیر شنوایی از سیگنال‌های بالینی با استفاده از سه برنامه a و b و c

<table>
<thead>
<tr>
<th>برنامه</th>
<th>برنامه</th>
<th>برنامه</th>
<th>سیگنال</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig1-2</td>
<td>Sig2-60-4</td>
<td>Sig2-50-2</td>
<td>Sig2-40-1</td>
<td>1</td>
</tr>
<tr>
<td>Sig1-2</td>
<td>Sig2-60-3</td>
<td>Sig2-50-1</td>
<td>Sig2-40-2</td>
<td>2</td>
</tr>
<tr>
<td>Sig2-40-1</td>
<td>Sig2-60-5</td>
<td>Sig2-50-2</td>
<td>Sig2-40-3</td>
<td>3</td>
</tr>
<tr>
<td>Sig2-40-4</td>
<td>Sig2-60-4</td>
<td>Sig2-50-3</td>
<td>Sig2-40-5</td>
<td>4</td>
</tr>
<tr>
<td>Sig2-40-6</td>
<td>Sig2-60-2</td>
<td>Sig2-50-4</td>
<td>Sig2-40-7</td>
<td>5</td>
</tr>
<tr>
<td>Sig2-40-8</td>
<td>Sig2-60-3</td>
<td>Sig2-50-5</td>
<td>Sig2-40-9</td>
<td>6</td>
</tr>
<tr>
<td>Sig2-40-10</td>
<td>Sig2-60-4</td>
<td>Sig2-50-6</td>
<td>Sig2-40-11</td>
<td>7</td>
</tr>
<tr>
<td>Sig2-40-12</td>
<td>Sig2-60-5</td>
<td>Sig2-50-7</td>
<td>Sig2-40-13</td>
<td>8</td>
</tr>
<tr>
<td>Sig2-40-14</td>
<td>Sig2-60-1</td>
<td>Sig2-50-8</td>
<td>Sig2-40-15</td>
<td>9</td>
</tr>
<tr>
<td>Sig2-40-16</td>
<td>Sig2-60-2</td>
<td>Sig2-50-9</td>
<td>Sig2-40-17</td>
<td>10</td>
</tr>
<tr>
<td>Sig2-40-18</td>
<td>Sig2-60-3</td>
<td>Sig2-50-10</td>
<td>Sig2-40-19</td>
<td>11</td>
</tr>
<tr>
<td>Sig2-40-20</td>
<td>Sig2-60-4</td>
<td>Sig2-50-11</td>
<td>Sig2-40-21</td>
<td>12</td>
</tr>
<tr>
<td>Sig2-40-22</td>
<td>Sig2-60-5</td>
<td>Sig2-50-12</td>
<td>Sig2-40-23</td>
<td>13</td>
</tr>
<tr>
<td>Sig2-40-24</td>
<td>Sig2-60-1</td>
<td>Sig2-50-13</td>
<td>Sig2-40-25</td>
<td>14</td>
</tr>
<tr>
<td>Sig2-40-26</td>
<td>Sig2-60-2</td>
<td>Sig2-50-14</td>
<td>Sig2-40-27</td>
<td>15</td>
</tr>
<tr>
<td>Sig2-40-28</td>
<td>Sig2-60-3</td>
<td>Sig2-50-15</td>
<td>Sig2-40-29</td>
<td>16</td>
</tr>
<tr>
<td>Sig2-40-30</td>
<td>Sig2-60-4</td>
<td>Sig2-50-16</td>
<td>Sig2-40-31</td>
<td>17</td>
</tr>
<tr>
<td>Sig2-40-32</td>
<td>Sig2-60-5</td>
<td>Sig2-50-17</td>
<td>Sig2-40-33</td>
<td>18</td>
</tr>
<tr>
<td>Sig2-40-34</td>
<td>Sig2-60-1</td>
<td>Sig2-50-18</td>
<td>Sig2-40-35</td>
<td>19</td>
</tr>
<tr>
<td>Sig2-40-36</td>
<td>Sig2-60-2</td>
<td>Sig2-50-19</td>
<td>Sig2-40-37</td>
<td>20</td>
</tr>
<tr>
<td>Sig2-40-38</td>
<td>Sig2-60-3</td>
<td>Sig2-50-20</td>
<td>Sig2-40-39</td>
<td>21</td>
</tr>
<tr>
<td>Sig2-40-40</td>
<td>Sig2-60-4</td>
<td>Sig2-50-21</td>
<td>Sig2-40-41</td>
<td>22</td>
</tr>
<tr>
<td>Sig2-40-42</td>
<td>Sig2-60-5</td>
<td>Sig2-50-22</td>
<td>Sig2-40-43</td>
<td>23</td>
</tr>
<tr>
<td>Sig2-40-44</td>
<td>Sig2-60-1</td>
<td>Sig2-50-23</td>
<td>Sig2-40-45</td>
<td>24</td>
</tr>
<tr>
<td>Sig2-40-46</td>
<td>Sig2-60-2</td>
<td>Sig2-50-24</td>
<td>Sig2-40-47</td>
<td>25</td>
</tr>
<tr>
<td>Sig2-40-48</td>
<td>Sig2-60-3</td>
<td>Sig2-50-25</td>
<td>Sig2-40-49</td>
<td>26</td>
</tr>
<tr>
<td>Sig2-40-50</td>
<td>Sig2-60-4</td>
<td>Sig2-50-26</td>
<td>Sig2-40-51</td>
<td>27</td>
</tr>
<tr>
<td>Sig2-40-52</td>
<td>Sig2-60-5</td>
<td>Sig2-50-27</td>
<td>Sig2-40-53</td>
<td>28</td>
</tr>
<tr>
<td>Sig2-40-54</td>
<td>Sig2-60-1</td>
<td>Sig2-50-28</td>
<td>Sig2-40-55</td>
<td>29</td>
</tr>
<tr>
<td>Sig2-40-56</td>
<td>Sig2-60-2</td>
<td>Sig2-50-29</td>
<td>Sig2-40-57</td>
<td>30</td>
</tr>
<tr>
<td>Sig2-40-58</td>
<td>Sig2-60-3</td>
<td>Sig2-50-30</td>
<td>Sig2-40-59</td>
<td>31</td>
</tr>
<tr>
<td>Sig2-40-60</td>
<td>Sig2-60-4</td>
<td>Sig2-50-31</td>
<td>Sig2-40-61</td>
<td>32</td>
</tr>
<tr>
<td>Sig2-40-62</td>
<td>Sig2-60-5</td>
<td>Sig2-50-32</td>
<td>Sig2-40-63</td>
<td>33</td>
</tr>
<tr>
<td>Sig2-40-64</td>
<td>Sig2-60-1</td>
<td>Sig2-50-33</td>
<td>Sig2-40-65</td>
<td>34</td>
</tr>
<tr>
<td>Sig2-40-66</td>
<td>Sig2-60-2</td>
<td>Sig2-50-34</td>
<td>Sig2-40-67</td>
<td>35</td>
</tr>
<tr>
<td>Sig2-40-68</td>
<td>Sig2-60-3</td>
<td>Sig2-50-35</td>
<td>Sig2-40-69</td>
<td>36</td>
</tr>
<tr>
<td>Sig2-40-70</td>
<td>Sig2-60-4</td>
<td>Sig2-50-36</td>
<td>Sig2-40-71</td>
<td>37</td>
</tr>
<tr>
<td>Sig2-40-72</td>
<td>Sig2-60-5</td>
<td>Sig2-50-37</td>
<td>Sig2-40-73</td>
<td>38</td>
</tr>
<tr>
<td>Sig2-40-74</td>
<td>Sig2-60-1</td>
<td>Sig2-50-38</td>
<td>Sig2-40-75</td>
<td>39</td>
</tr>
<tr>
<td>Sig2-40-76</td>
<td>Sig2-60-2</td>
<td>Sig2-50-39</td>
<td>Sig2-40-77</td>
<td>40</td>
</tr>
<tr>
<td>Sig2-40-78</td>
<td>Sig2-60-3</td>
<td>Sig2-50-40</td>
<td>Sig2-40-79</td>
<td>41</td>
</tr>
<tr>
<td>Sig2-40-80</td>
<td>Sig2-60-4</td>
<td>Sig2-50-41</td>
<td>Sig2-40-81</td>
<td>42</td>
</tr>
<tr>
<td>Sig2-40-82</td>
<td>Sig2-60-5</td>
<td>Sig2-50-42</td>
<td>Sig2-40-83</td>
<td>43</td>
</tr>
<tr>
<td>Sig2-40-84</td>
<td>Sig2-60-1</td>
<td>Sig2-50-43</td>
<td>Sig2-40-85</td>
<td>44</td>
</tr>
<tr>
<td>Sig2-40-86</td>
<td>Sig2-60-2</td>
<td>Sig2-50-44</td>
<td>Sig2-40-87</td>
<td>45</td>
</tr>
<tr>
<td>Sig2-40-88</td>
<td>Sig2-60-3</td>
<td>Sig2-50-45</td>
<td>Sig2-40-89</td>
<td>46</td>
</tr>
<tr>
<td>Sig2-40-90</td>
<td>Sig2-60-4</td>
<td>Sig2-50-46</td>
<td>Sig2-40-91</td>
<td>47</td>
</tr>
<tr>
<td>Sig2-40-92</td>
<td>Sig2-60-5</td>
<td>Sig2-50-47</td>
<td>Sig2-40-93</td>
<td>48</td>
</tr>
</tbody>
</table>
REFERENCES

