بررسی پاسخ‌های برونتیکه شنوایی ساقه مغز با تحریکات الکتریکی (EABR) در بیماران که حزون شده در مرکز کاست حزون وابسته به مؤسسه توسعه دانش و پژوهش ایران

چکیده

بررسی پاسخ‌های برونتیکه شنوایی ساقه مغز با تحریکات الکتریکی (EABR) در بیماران که حزون شده در مرکز کاست حزون وابسته به مؤسسه توسعه دانش و پژوهش ایران. در این پژوهش تایپ 22 کاناله مولتیپل در مرکز کاست حزون وابسته به مؤسسه توسعه دانش و پژوهش ایران مورد بررسی قرار گرفته است. محدوده سنی افراد 23-32 سال بود. نتایج نشان داد که:

1- پاسخ‌های برونتیکه شنوایی ساقه مغز با تحریکات الکتریکی (EABR) در بیماران که حزون شده فعالیتی داشت.

2- زمان تأخیر مطلق امواج EABR 0.15-0.25 میلی‌ثانیه کوچکتر از زمان تأخیر مطلق امواج ایف که شده تحریک الکتریکی رابطه معکوس دارد (5/5).

3- زمان تأخیر مطلق امواج EABR در III و V در EABR متفاوت می‌باشد (5/5).

4- زمان تأخیر بین فله EABR در 0.15 و 0.25

ABSTRACT

Title: Assessment of Electrically Evoked Auditory Brain Stem Response of 30 Implanted Patients with Nucleus Multichannel Cochlear Implant

Methods and Materials: Investigation of electrically evoked auditory brain stem response (EABR) is a new issue, especially in implanted patients. Experiments were performed in C.I Center of Iranian Institute for Science and research expansion, 1996 on 30 implanted patients with 22 spectra and MSP cochlear implant system and 30 normal subjects with the range of 3-33 years.

Findings:

1- EABR was obtained in the implanted patients.
2- Absolute latency of EABR waves is 1-1.5 ms shorter than ABR waves (P<0.05).
3- Absolute latency of wave V decreases as a function of electric stimulus magnitude (P<0.05).
4- No significant difference was observed in IPL III-V between ABR and EABR.
ناصر اکبری - کارشناس ارشدشنایی شناسی
دکتر محمد فرهادی - سئوشناس کوش و حقوقی
دکتر احمد دانشی - شناختگرد و حقوقی
دکتر علامه علی‌یار - ژنتیکلوئیزی و نوکلیوتید
دکتر سعید متین زاده - دکتر اثریان تخصصی

مقدمه
در سال‌های اخیر به کارگیری کاشت حزران برای ایجاد شوایی با تحریک‌های الکتریکی در افراد با کم‌شنوایی عمیق که نمی‌توانند از سمعک بهره ببرند، استفاده و رایزنی‌های داشته و در ایران نیز از آن تناک اشاره کرده‌اند. بررسی با درمانی سیستم عصب‌های شوایی به تحریک‌های الکتریکی هدایت آن نسبت به مصرف کاندیت سیستم‌های بی‌مانند نشان می‌دهد. برای بهترین نتایج، ممکن است به روش‌های کمک‌یافته تکنولوژی آزمایشگاهی کمک کنند. برخی از روش‌های کمک‌یافته الکتریکی در کاشت حزران گردید. این پژوهش اولین گام در پیگیری موضوعات مدیکر در ایران (ABR) بوده و بهبود برای کاشت حزرانی به‌پایان رسانده است. در بین 20 ماهگی نسگلانتیک، در جنس و بالغانه مهم و جالبی است. خرابی و پیشنهاد کنترل شوایی که در شمای تهیه (Nicolet) و Spectra پژوهش 22 کاناله نوکلیوت مدل می‌باشد. در پژوهش، شبکه Nicolet Compact 4، با عناوین محلی و ناحیه‌ای، بر این بازارگیری شوایی از طریق اپراتور خاص به‌سیستم تخصصی و برنامه‌ریزی کد (DPS) و ناهار دوگانه شاخص لیزر نمایش (Dual Processing) کامپیوتری IBM شعله و پردازش دوگانه که نتایج کشف (Cochlear PTY) برای تظیم کاشت حزران طراحی شده‌است (شکل 1).

شیوه‌جراحی
پیمایش هفته‌ی یک از عمل کاشت حزران برام اربیفته (Speech Processor) و نظیر آن مراحل کیفی (Most Comfortable کردن، مدل سازی و حداکثر راحتی) برای هر کاترود تغییر نشده و داده‌ی الکترودی را لئو Gegenricht und في نهایت ضرورت یافتن که ابر EABR محدوده‌ی BP+ MCL می‌باشد. در این شرایط، می‌توان به علت کامل آرام دراز کرده، هماهنگی پیشنهاد و مطالعه و گوش برای قرار گرفتن الکترودهای سطحی در طی نتیجه زمان باسکار (Anmiprep) چشمانه‌ای نیز شدند. الکترودها به‌ترتیب در خانه، مطالعه و تجربه‌های بروز و مطالعه با مسئول صدا و به عنوان برترین گزارش‌های این کاناله، نوکلیوت مدل گوناگون به‌طور کننده می‌باشد.

مواد و روش‌ها
جامعه مورد مطالعه
در این مطالعه روی 30 بیمار خردسال و بزرگسال زن و مرد که سودرب عمل جراحی کاشت حزران 22 کاناله نوکلیوت مدل گوناگون به‌طور متوسط شدند، و
EABR SYSTEM

Diagnostic and Programming system

Dual Processor interface

EABR System Diagram

Diagram showing the connection of various components including Pre Amp, Signal Averager, Printer, Program Disk, Data Disk, Keyboard, CRT Display, IBM/PC with Cochlear Corp MBI Card, WSP, SPE.
Number of elicited EABR by max & med & min stim level

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>10</td>
</tr>
<tr>
<td>med</td>
<td>5</td>
</tr>
<tr>
<td>min</td>
<td>2</td>
</tr>
</tbody>
</table>

V5 Abs. lat of ABR & EABR

(Elc no. 20, 12.5) in max, med, min stim level

<table>
<thead>
<tr>
<th>Intensity</th>
<th>M.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>7.25</td>
</tr>
<tr>
<td>Med</td>
<td>5.95</td>
</tr>
<tr>
<td>Min</td>
<td>4.90</td>
</tr>
</tbody>
</table>

The Peaks of EABR

in max & med & min stim level

<table>
<thead>
<tr>
<th>Peak</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>10</td>
</tr>
<tr>
<td>med</td>
<td>5</td>
</tr>
<tr>
<td>min</td>
<td>2</td>
</tr>
</tbody>
</table>

Shoabeh's 15 and 16

Downloaded from audiums.ac.ir at 22:00 IRDT on Wednesday, April 10th, 2019
شکل ۲- اثر آدیفیک محرک‌کردن EABR (مرکز کام اسپام، ۱۳۷۵)
شکل ۳- منحنی EABR بدون آنتی‌بیوتیک محرک (مرکز کاشت حارون،۱۳۷۵)
بیانیه
در پی‌های رود طبیعی، صوت مجدگی گوشی‌های خارجی و گوش‌ها فیزی‌های کم‌کن‌کن. سپس ارتباطات باعث اندازه‌گیری صوتی و طول شتاب‌یابی حرکات را بهبود می‌دهند. منجر به آزاد شدن و استفاده هماهنگی مدل‌های رنگی در صورتی می‌گردد که زمان تأخیر صوت کنار هم‌زمان EABR و حفظ روند تأخیر بین می‌گردد. اگر کنون EABR می‌گردد، حفظ EABR منجر به آزاد شدن و استفاده هماهنگی مدل‌های رنگی در صورتی می‌گردد که زمان تأخیر صوت کنار هم‌زمان EABR و حفظ روند تأخیر بین می‌گردد. اگر کنون EABR
در پردازشگر گفتار می‌شود، حتی با استفاده از آن پیش از عمل جراحی می‌توان برای انتخاب بیمارانی که بستم عمیکری یا کاربری می‌توان برای آزمایش پاسخ‌های بی‌بیکاری شنیده شده مفید با تمرین‌های الکتریکی در افراد کاشت حاترون شده در نظر گرفته که منجر به انتخاب بیمارانی تقریباً کارآمدتر و پیشرفته تکنولوژی‌ها و ابزارها و روند بردارش می‌گذارنی که کار گرفته شده

پی‌نویس

1- Auditory Brainstem Response
2- Electrically Auditory Brainstem Response

منابع