آلودگی صوتی ناشی از مته‌های بادی در خدمات شهری

مهندس رستم گل محمدرضا
معاون آموزشی و عضو هیئت علمی
دانشگاه بدیع، دانشگاه علوم پزشکی همدان

چکیده

بی‌منظور ارزیابی صداهای ایجاد شده توسط مته‌های پوپولیکتک ۲۲ کیلوگرمی که در خدمات مختلف شهری برای کنترل و شکاف‌سازی یک مورد به‌دست آمده، در ناحیه‌ای از بین برخی از محله‌های آنتالوپا همراه با انتفاده از مجهزی ترک از فشار صوت خون‌محیطی و کمپرسور می‌باشد. مایکلین نمایشگری که در مورد بررسی ۹/۷ DCBC و ۹/۷/۹ DCBC میانه‌های کار با انحراف می‌باشد، ۷/۱ DCBC و ۷/۱/۹ DCBC می‌باشد. مایکلین نمایشگری که در مورد بررسی ۹/۷ DCBC و ۹/۷/۹ DCBC و ۷/۱ DCBC و ۷/۱/۹ DCBC می‌باشد.

ارزیابی موارد فوق با توجه به ساعت تقریبی مواجهه رژه‌های نشان می‌دهد که در تمام موارد مواجهه کارگران با یکدیگر ایجاد می‌شود. نتایج نشان می‌دهد که می‌توانند در مواجهه رژه‌های نشان می‌دهد که در تمام موارد مواجهه کارگران با یکدیگر ایجاد می‌شود.

مقدمه

بکارگیری ایبارهای پوپولیکتک در بسیاری از صنایع معدن و صنعتی، به هدف دسترسی آسان و مقرونه به صرفه‌جویی بوده می‌باشد. استفاده از مته‌های بادی در خدمات شهری نیز از این جمله است.

جهت ایمنی و بهداشتی استفاده از ایبارهای بادی (آوی‌دار و ضریب‌های) از دو نظر اهمیت دارد: یکی صدای کروی‌های ایجاد شده توسط این ایبارها و دیگری ارئات‌های آنها که به‌طور جداگانه یا به‌طور بازاپیتی از این ایبارها در محیط‌های مختلف باعث ایجاد سایش‌های می‌گردد.
جدول 1- خلاصه نتایج اندازه‌گیری تراز فشار صوت

<table>
<thead>
<tr>
<th>میانگین</th>
<th>انحراف میان</th>
<th>موارد اندازه‌گیری شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>96/4</td>
<td>5/4</td>
<td>تراز فشار صوت زنده</td>
</tr>
<tr>
<td>118/3</td>
<td>7/7</td>
<td>تراز فشار صوت کلکگه بدون بار گازی</td>
</tr>
<tr>
<td>128/5</td>
<td>1</td>
<td>تراز فشار صوت کلکگه بدون بار گازی</td>
</tr>
<tr>
<td>19/6</td>
<td>2/2</td>
<td>تراز فشار صوت هنگام کار</td>
</tr>
<tr>
<td>138/1</td>
<td>2/6</td>
<td>تراز پیک فشار صوت هنگام کار</td>
</tr>
<tr>
<td>18/6</td>
<td>3/7</td>
<td>فاکتور فله هنگام کار</td>
</tr>
<tr>
<td>98/6</td>
<td>2/8</td>
<td>تراز فشار صوت هنگام کار کلکگه در فاصله 5 متری</td>
</tr>
<tr>
<td>98/5</td>
<td>2/6</td>
<td>تراز فشار صوت هنگام کار کلکگه در فاصله 10 متری</td>
</tr>
<tr>
<td>88/8</td>
<td>2/8</td>
<td>تراز فشار صوت هنگام کار کلکگه در فاصله 20 متری</td>
</tr>
</tbody>
</table>

روش تحقیق

در پژوهش انجام شده‌های بانهای 32 کیلوگرمی که در کان و دو هواپیما اجرا شدند و تعدادی در نمایشگاه‌های شهرداری، آب و فاضلاب برخی، برخی مꦰیاوار و گاز) مورد استفاده می‌باشند و به تعداد نیز دستگاه‌های مورد استفاده محدود و ارزیابی دستگاه‌ها در بخش مطابق آلودگی بوده است. در هر سه بخش ارزیابی دستگاه‌های قابل در با سنت انجام گرفته است. برای هر مورد ارزیابی نواحی زیر به عمل آمده است:

الف- تراز فشار صوت زنده شال محبوب و کمپرسور هوای در SLOW شکمه A و SLOW ب- تراز فشار صوت مه در دو حالت آزاد بودن قلم (بدون بار کاری) و هنگام کار (کندن آسفلت در شرایط بکام) در IMP شکمه C و باخ زمانی D- سایر مشاهده‌ها قابل ذکر

جدول 1- تراز فشار صوت هنگام کار فن در فاصله 1 متری
نمودار ۱: مقایسه آینه‌ای فکانس تراز فشار صوتی هوا در هنگام کار

زمان مجاز از جنگ دیقیه متوسط تا به خاک کمتر در حالی که مدت زمان
مواجهه واقعی بیمار بلافاصله (در حد ساعت) ترازهای فشار
صوت صورت می‌گیرد. این مکانیسم را نظیراً غیرمکن می‌نامند. تراز یکی فشار
نمودار بیشتر گزینی بوده و اثرات ذکر شده دور از اندازه نیست.
نمودار ۱: مقایسه آینه‌ای فکانس صداهای مختلف هنگام کار در
آکتسایشن شبان می‌دهد. همان چنین طور که ملاحظه می‌گردد عده
تمرکز بر این زیر قسمت نوای ۱۲۵ تا ۱۰۵ هرتز است که بر اثر
پردازش مکانیکی و ریشه‌ای فراگانس مشکل‌آمیز بوده و می‌باشد.
ترازهای دیگر شده می‌تواند اثرات مهمی داشته باشد. این عامل
واکنش‌های فیزیولوژیک بدن را وارد بروز بروز به اندام شنوایی
(افزاری‌های آستانه شنوایی (PTS & TTS)
بدین‌گونه می‌توان نتایج این بررسی را به تمام مراکز علمی لیک و
بررسی‌های شناخته شده ترازهای فشار صوت و بیش در مهین حدود
می‌باشد. لذا لازم است که ارزیابی مشاهده برای انواع وسایل
بنویسیم هر یک از معلمان که در معادن کشور انجام گردد و نیز در خصوص
1- بیورنژاده یوسف‌ی، ایمنی در معدن زیرزمینی و توله سازی، مؤسسه کار و تأمین اجتماعی تهران 1364
2- لیاقتی غلامعلی، اکسوستیک در معدنی، دانشگاه شهید بهشتی 1369
3- کلمحمدی رستم، پایان‌نامه، اندازه‌گیری صدا کوبایی و ارتقاء موضوع، دانشکده بهداشت دانشگاه علوم پزشکی تهران، نشره شماره 1496 سال 1369

4- ACGIH, Threshold Limit Values - 108 - 110 - 1995, USA
5- Bies D. A. Engineering Noise Control, E & FNSpon, UK, 1980
8- Lashek, Soletski, Assessment of impulses Noise in an Industrial Forge, Noise & Vibration Buliten, Multl Science Pub., 1990, VOL4 NO2
9- Lewis H. Bell, Industrial Noise Control, Marcel Dekkel Inc. NewYork, 1994
10- Lharitonor - VI- Hyginic Evaluation of Physical Characteristics of the effect of Impulse Noise ..., Gig- Tr- Pro - Zabol- 1989, (7): 8-10
11- Quest Electronics, Instruction Manual for 180 O & OB- 300, USA
12- Suvoro - G. A. et al., The Establishment of the MPEL for Impulse Noise, Gig- Tr- Prof - Zabol- 1992, (11-120) 4-7