پیشنهاد روش فرمولی در تفسیر نتایج آزمون موازنه متناوب بلندی

مید جلال ثامنی - کارشناس ارشد شنوایی شناسی

ABSTRACT

Title: Comparing Intensity Elicited Maximum Reflex Amplitude Between Noise Induced Hearing Loss & Acoustic Trauma at 1kHZ, Contralaterally, and Investigate Relationship Between Amplitude and Hearing Impairment

Method and Materials: This cross sectional descriptive and analytic survey was done at Golestan navy hospital in Tehran, between June 1998 and March 1999 on total of 69 male subject (104 ears, 50 acoustic trauma & 54 noise induced H.L) between 20 to 40 years old.

Results:
1- The mean acoustic reflex threshold at 1kHZ showed there is no significant difference between two groups.
2- The intensity elicited maximum reflex amplitude at 1 kHZ didn’t produce at a significant linear correlation with subject’s age and ear canal volume in both groups.
3- The intensity elicited maximum reflex amplitude in NIHL group wasn’t shown a significant correlation with ear compliance and gradient.
4- The mean intensity (SPL) elicited maximum reflex amplitude in NIHL group was more than mean intensity (SPL) in acoustic trauma group.
5- The mean intensity (SL) elicited maximum reflex amplitude in NIHL group was More than mean intensity (SL) in acoustic trauma group.

Conclusion: Acoustic reflex amplitude is reduced for subjects with NIHL compared with acoustic trauma subjects.

خلاصه

در این مطالعه سعی شده با بیشتر گیری از ویژگی متغیری های ترسیمی آزمون ABLB (ماکرو بالام‌های جزئی، کامل و بیش از حد) منتها شد از فرمول دوم (نسبت اعداد آخرین مرحله آزمون) برای تعیین نوع رکونتم استفاده می‌گردد. قابل ذکر است در تعیین دقیق نتایج آزمون ABLB با ابتدا تغییرات دیگر انجام داده شده در مورد Closest ABLB به عنوان خاطر آزمون در تفسیر درجه جسمانی. لذا تبیه کامل فرمول‌های مذکور از دلیل تغییری در این معادله از نظریه استفاده از آن اثری ندارد. در مرحله بعد سعی شده به کمک کن روش زمان انجام آزمون به شکلی تعیین برای کارگری پایین کننده، کوتاه گردد. باید منظر انجام آزمون تا نتایج مشابه و متناوب بلندی در مرحله آخر را شامل شده و به کمک فرمول‌های مذکور نتایج بدست می‌آید. در پایان به منظر بررسی کار آینده آنها نتایج حاصل از این روش با روش ترسیمی مقایسه شده است.
مقدمه
آزمون رفتاری ABLB که توسط Fowler در سال 1936 طراحی شده، به عنوان یک آزمون تنش‌یابی کمیک در کار سایر آزمون‌ها برای افزایش کم‌نشانی‌های حیاتی از ورود حاکمیت بکار می‌رود. اساس آن برای پاک شدن طبیعی رضایت تبادل این آزمون تحت تأثیر شدید و ماهیت رکوردهای جدید و انرژی انسان باند به آن نیز بهنوه خود و این به میزان محل دمپ و سبک‌شناختی‌های حاکمیت است.

در روشن بررسی آزمون، جاده و شدت منفی در گوش مرجع (گوش مرجع) یا از ناحیه دوم و شدت منفی در گوش مقبنه (گوش مقبنه) با درجه نسبت به حالت نرمال (Limit) به‌طور حذفی در آزمون می‌شود. در پایان مانند تکرار نیاز به روش نشان می‌دهد. نردبان یا روش ترسری (Adjustment) با تاپ روش نشان می‌دهد. روش نشان می‌دهد. نردبان یا روش ترسری با تاپ روش نشان می‌دهد.

در نتیجه آزمون ABLB با روش نشان می‌دهد. روش نشان می‌دهد. نردبان یا روش ترسری با تاپ روش نشان می‌دهد.

در نتیجه آزمون ABLB با روش نشان می‌دهد. روش نشان می‌دهد. نردبان یا روش ترسری با تاپ روش نشان می‌دهد.

مقدمه ریاضی
برای نمایش موضعی نقطه و خطوط در یک صفحه از دستگاه محوری‌های مختصات قدرت مورد استفاده می‌باشد. دستگاه محوری‌های مختصات از دو محور عمود برهم x و y نشان دهنده شده و شامل 4 ناحیه می‌باشد (نمونه‌ای). همانطور که می‌دانید، مختصات نقطه در این دستگاه با

\[\begin{align*}
& x = m_1 X + m_2 Y + m_3 Z + m_4, \\
& y = m_5 X + m_6 Y + m_7 Z + m_8, \\
& z = m_9 X + m_{10} Y + m_{11} Z + m_{12}
\end{align*} \]

مثال 1:

پاره خط AB با نیم‌پایه z = 1-2x + 3y است.
راه‌حل فرمولی در تفسیر نتایج آزمون

با توجه به آنچه در مقدمه بیان شد، می‌توان روی فرمولی برای تفسیر نتایج آزمون طراحی نمود. بهینه‌سازی ABLB طراحی می‌شود. بدین منظور، مدل‌های خطی، مدل‌های غیرخطی و مدل‌های مختلط استفاده می‌شود. بهینه‌سازی یک تابع غیرخطی به‌منظور بهینه‌سازی می‌شود.
کسر ۱، واحد اضافه می‌کنیم که دو حالت بیش می‌آید:
الف - اگر نتیجه باز هم کوچکتر از یک بین می‌شود
ب - اگر نتیجه مناسب با کوچک‌تر از یک بین می‌شود
عدم رکورنوم می‌باشد.

در مورد سه گانه‌ای شخص‌های نیز که:
الف - اگر ۱-ا یا ۲-ای بین می‌شود، رکورنوم کامل می‌باشد.
ب - اگر ۱-ای بین می‌شود در این حالت بیش می‌آید.

تعیین نتایج به دو کلیه می‌باشد:
الف - اگر نتیجه باز هم کوچک‌تر از یک بین می‌شود
ب - اگر نتیجه مناسب با کوچک‌تر از یک بین می‌شود
عدم رکورنوم کامل می‌باشد.

بعنی است:

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>V₁</th>
<th>V₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁ > R₂</td>
<td>V₁ < V₂</td>
<td>دمیده می‌شود</td>
<td></td>
</tr>
<tr>
<td>R₁ < R₂</td>
<td>V₁ > V₂</td>
<td>دمیده می‌شود</td>
<td></td>
</tr>
<tr>
<td>R₁ = R₂</td>
<td>V₁ = V₂</td>
<td>دمیده می‌شود</td>
<td></td>
</tr>
</tbody>
</table>

همانطور که در مثال فوق دیده می‌شود، به هنگام استفاده از خطای با روش فرمولی می‌توان به نتایج بیشتر حاصل می‌شود.

یپشنده‌روش اصلاحی (یک مرحله‌ای) چگونه انجام

\[
\Delta BLV
\]

با توجه به نتایج آزمون ABLV به روش فرمولی می‌توان
روشی اصلاحی را چه جدت انجام آن اتخاذ نمود. همان چه که می‌دانیم
شاید برای تفسیر، حداقل به معرفی مرحله آزمون نیازمندیم. لذا به
جای آنکه رود انجام آزمون را از ابتدا شروع نماییم، به‌ویژه مقدمه
مرحله آخر آزمون را انجام می‌دهیم. برای تعیین سطح شدت
آزمون می‌توان از گوش مراجع (گوش سالم) کمک گرفت.
یعنی حداکثر شدت ممکن را بگیرید بهره از آن می‌گیرید و گوش
شدید بخاطر سپردن فرمالو پیچیده و استفاده از آن ممکن نیست.
رشد اما تاجیه این را بپذیرید. در برگه سیم‌های درج گردید می‌توان
گفت: سمت زمانی که برای محاسبه در روش یک مرحله صرف
می‌شود، کاهش ذهنی می‌کرده است که برای این آزمون در روش
عملیات صرف می‌گردد.

1- Alternate Binaural Loudness Balance
2- Recruitment
3- Reference Ear
4- Variable Ear
5- Ladergram
6- Graphic or Loudness Growth Function
7- Hyper Recruitment
8- Complet Recruitment
9- No Recruitment
10- Recruitment
11- Decriment

منابع
1. جلالی، بهرام. 1370. تمرین انجام و تفسیر تست‌های تکمیلی (جزوه درسی) دانشکده علوم کوئینشی دانشگاه علوم پزشکی ایران