کنترل سرودها در آزمایشگاه
فیزیک شرکت پلی اکریل و بررسی میزان
کاهش سرودها با استفاده از
جاذبهای مختلف

mahnoz herndi
کارشناس ارشد بهداشت حرما
شرکت پلی اکریل اصفهان

شاید تحقیقی بشران عنوان کرد که بررسی سرودها و مطالعاتی
d که در این زمینه انجام شده نسبت به عوامل فیزیکی دیگر می‌باشد
از اینکه گستردگی برخورد است. باتوجه به این مطالعات اثرات
زیان‌بخش آن بر سلامت جسمی، روانی و اجتماعی می‌باشد
شما است. به عضویت می‌باشد مانند چاهان رابطه میزان
کاهش شنوا در میزان صدا و مدت زمان کار را در جدول 1 نشان

جدول 1. درصد آسیب شنوایی در ارتباط با میزان صدا و مدت کار

<table>
<thead>
<tr>
<th>مدت کار</th>
<th>تراز فشار صوت dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 سال</td>
<td>95, 90, 85</td>
</tr>
<tr>
<td>10 سال</td>
<td>75, 63, 42</td>
</tr>
<tr>
<td>15 سال</td>
<td>70, 58, 42</td>
</tr>
</tbody>
</table>

مدى ده. همانطور که ملاحظه می‌شود همیشه قابل ملاحظه‌ای بین
آسیب شنوایی در ارتباط با میزان صدا و مدت کار وجود دارد.
مهم‌ترین روش‌های کنترل صدا عبارت است از:
1- جایگزینی وسیله کم‌سرودها به جای نهایان پرسودا
2- اصلاح در منص صدا در جهت کاهش صدا
3- ارزولی نمودن منص صدا

در شرکت پلی اکریل در رابطه با کنترل کیفیت بکی از
محصولات (نخ پلی اکریل) از سیستم لیدنی استفاده می‌گردد. در این
سیستم نخ با سرعت زیاد (3000 بار در دقیقه) توسط حتی هوا
(10 پی. سی. ای.) که در داخل محل فلز قرار داشته طول 7/7 متر، عرض
86/7 متر و ارتفاع 1/7 متر) قرار دارد از مقابل چشم الکترونیک
عبره کرده در صورت وجود عب (پازی فیلم‌های و وجود آن‌ها
خارجی و کشیدگی پیش از حد) سیستم به طرف انرژیک مونوک و
معایب نخ مورد بررسی قرار می‌گیرد.
جدول 2- اندازه‌گیری سرودنادا اولیه لندلی در آزمایشگاه فزیک

میزان صدا	اندازه‌گیری محل	زیر لوی هوا	گوشه راست	وسط	مماس زیر در	ارتقاء ۵۰ متری از زمین	ارتقاء ۷۵ متری از زمین	ارتقاً ۱۵۰ متری از اسپیستم	ابتدا ۱۰ متری از اسپیستم					
8۱	9۶	9۶	9۷	۹۷	۹۶	۹۷	۹۸	۹۷	۹۷	۹۷	۹۷	۹۷	۹۷	۹۷
۱۱۸	۱۱۶	۱۱۴	۱۱۳	۱۱۵	۱۱۴	۱۱۵	۱۱۵	۱۱۵	۱۱۵	۱۱۵	۱۱۵	۱۱۵	۱۱۵	۱۱۵
۱۱۱	۱۱۷	۱۱۷	۱۱۷	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹	۱۱۹
۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴	۱۰۴
۱۰۸	۱۰۸	۱۰۸	۱۰۸	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱	۱۱۱
۱۰۹	۱۰۹	۱۰۹	۱۰۹	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰	۱۱۰

دیسی بل صدا بدون جاذب
(صدای اولیه)

روش مطالعه

نوع جاذب به مشخصات ذکر شده در مراحل مختلف در داخل محیطه جهت نصب گردید که نتایج آن به شرح ذیل می‌باشند:

 وزن‌های لوله کاغذ صدا
در جدول ۴ صدادای قبل و بعد از نصب جاذب با ضخامت سانیتیر و فشرده گی متوسط بطور متوسط ۸ دسی بل کاهش صدا داشته است.

جدول ۴: اندک‌گری سروصداد در درون محظوطه جهت لیندنی در حالت‌های مختلف بر حسب dB

<table>
<thead>
<tr>
<th>محالت اندک‌گری</th>
<th>dBین صدا بدون جاذب (صدای اولیه)</th>
<th>dBین صدا بدون ۲/۵ سانیتیر</th>
<th>dBین صدا بدون ۲/۵ سانیتیر و فشرده‌گی متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع 5 متری از زمین</td>
<td>۱۳۱</td>
<td>۱۲۹</td>
<td>۱۲۴</td>
<td>۱۲۳</td>
<td>۱۲۲</td>
<td>۱۲۱</td>
<td>۱۲۰</td>
<td>۱۱۹</td>
<td>۱۱۸</td>
<td>۱۱۷</td>
</tr>
<tr>
<td>ارتفاع ۲/۵ متری از زمین</td>
<td>۱۰۸</td>
<td>۱۰۷</td>
<td>۱۰۵</td>
<td>۱۰۴</td>
<td>۱۰۳</td>
<td>۱۰۲</td>
<td>۱۰۱</td>
<td>۱۰۰</td>
<td>۹۹</td>
<td>۹۸</td>
</tr>
<tr>
<td>فصل ۲/۵ متری از سینمن</td>
<td>۷۹</td>
<td>۷۸</td>
<td>۷۶</td>
<td>۷۵</td>
<td>۷۴</td>
<td>۷۳</td>
<td>۷۲</td>
<td>۷۱</td>
<td>۷۰</td>
<td>۶۹</td>
</tr>
<tr>
<td>ابتدا می‌بایست</td>
<td>۶۶</td>
<td>۶۵</td>
<td>۶۴</td>
<td>۶۳</td>
<td>۶۲</td>
<td>۶۱</td>
<td>۶۰</td>
<td>۵۹</td>
<td>۵۸</td>
<td>۵۷</td>
</tr>
<tr>
<td>انتها می‌بایست</td>
<td>۴۵</td>
<td>۴۴</td>
<td>۴۳</td>
<td>۴۲</td>
<td>۴۱</td>
<td>۴۰</td>
<td>۳۹</td>
<td>۳۸</td>
<td>۳۷</td>
<td>۳۶</td>
</tr>
</tbody>
</table>

جدول ۵: اندک‌گری سروصداد در درون محظوطه جهت لیندنی در حالت‌های مختلف بر حسب dB

<table>
<thead>
<tr>
<th>محالت اندک‌گری</th>
<th>dBین صدا بدون جاذب (صدای اولیه)</th>
<th>dBین صدا بدون ۲/۵ سانیتیر</th>
<th>dBین صدا بدون ۲/۵ سانیتیر و فشرده‌گی متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع 5 متری از زمین</td>
<td>۱۳۱</td>
<td>۱۲۹</td>
<td>۱۲۴</td>
<td>۱۲۳</td>
<td>۱۲۲</td>
<td>۱۲۱</td>
<td>۱۲۰</td>
<td>۱۱۹</td>
<td>۱۱۸</td>
<td>۱۱۷</td>
</tr>
<tr>
<td>ارتفاع ۲/۵ متری از زمین</td>
<td>۱۰۸</td>
<td>۱۰۷</td>
<td>۱۰۵</td>
<td>۱۰۴</td>
<td>۱۰۳</td>
<td>۱۰۲</td>
<td>۱۰۱</td>
<td>۱۰۰</td>
<td>۹۹</td>
<td>۹۸</td>
</tr>
<tr>
<td>فصل ۲/۵ متری از سینمن</td>
<td>۷۹</td>
<td>۷۸</td>
<td>۷۶</td>
<td>۷۵</td>
<td>۷۴</td>
<td>۷۳</td>
<td>۷۲</td>
<td>۷۱</td>
<td>۷۰</td>
<td>۶۹</td>
</tr>
<tr>
<td>ابتدا می‌بایست</td>
<td>۶۶</td>
<td>۶۵</td>
<td>۶۴</td>
<td>۶۳</td>
<td>۶۲</td>
<td>۶۱</td>
<td>۶۰</td>
<td>۵۹</td>
<td>۵۸</td>
<td>۵۷</td>
</tr>
<tr>
<td>انتها می‌بایست</td>
<td>۴۵</td>
<td>۴۴</td>
<td>۴۳</td>
<td>۴۲</td>
<td>۴۱</td>
<td>۴۰</td>
<td>۳۹</td>
<td>۳۸</td>
<td>۳۷</td>
<td>۳۶</td>
</tr>
</tbody>
</table>

در جدول ۶ صدادای قبل و بعد از نصب جاذب‌های مختلف مقابله‌گر دیده است ملاحظه‌هایی محدود بیان که در گونه‌های بالایی راست و چپ بااندازه‌های بی‌بودن سطح جاذب از ۱۴ تا ۱۵ صدا ۱/۵ دسی بل می‌باشد.

ترکیبات فیزیکی صوت ساختار جاذب‌های شده در بیرون محظوطه، در حیطه صدا زای که افزایش در معرض آن قرار می‌گیرد. در نتایج محاسبات و آزمایشگاه‌های فیزیکی قبل و بعد از نصب جاذب‌های مختلف در جدول ۷ نشان داده شده است.
جدول ۸: مقایسه اندازه‌گیری صدا در آزمایشگاه فیزیک قبل و بعد از نصب جاذب با فشرده‌گی متوسط و ضخامت ۲ سانتی‌متر

<table>
<thead>
<tr>
<th>اندازه‌گیری صدا</th>
<th>dB(C) 31/5</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندازه‌گیری سه‌گانه</td>
<td>121</td>
<td>99</td>
<td>92</td>
<td>85</td>
<td>55</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>زیر لوله هوا</td>
<td>116</td>
<td>97</td>
<td>90</td>
<td>83</td>
<td>53</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>غوش راست</td>
<td>115</td>
<td>96</td>
<td>89</td>
<td>82</td>
<td>52</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>غوش چپ</td>
<td>114</td>
<td>95</td>
<td>88</td>
<td>81</td>
<td>51</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>مسیر زیر الکتریکی</td>
<td>114</td>
<td>95</td>
<td>88</td>
<td>81</td>
<td>51</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>ارتفاع ۵ متری از زمین</td>
<td>114</td>
<td>95</td>
<td>88</td>
<td>81</td>
<td>51</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>فاصله ۵ متری از سیستم</td>
<td>97</td>
<td>90</td>
<td>83</td>
<td>80</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>انتهای برش‌بندی</td>
<td>96</td>
<td>90</td>
<td>83</td>
<td>80</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>انتهای میلیمتری</td>
<td>94</td>
<td>89</td>
<td>82</td>
<td>80</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
</tbody>
</table>

میانگین کاهش صدا در این مرحله به بهرین جاذب در فضاهای مختلف آزمایشگاه است. آزمایشگاه از ۵۴ تا ۷۸ دسی‌متر مربع می‌باشد.

بررسی کاهش صدا در فضاهای مختلف

در جدول ۸ اندازه‌گیری صدا و تجزیه آن بعد از نصب جاذب در فضاهای مختلف محاسبه می‌شود. میزان کاهش به بهرین جاذب در فضاهای مختلف آزمایشگاه است. در فضاهای مختلف، میزان کاهش به بهرین جاذب میانگین ۵۴ تا ۷۸ دسی‌متر مربع می‌باشد.

که از نظر این میزان کاهش، در فضاهای مختلف بسیار مافیوست و بسیار مناسب است. در نمونه‌های مختلف، میزان کاهش به بهرین جاذب میانگین ۵۴ تا ۷۸ دسی‌متر مربع می‌باشد. در این نمونه‌ها، میزان کاهش به بهرین جاذب میانگین ۵۴ تا ۷۸ دسی‌متر مربع می‌باشد.

۱۵۴
که افراد در معرض آن قرار می‌گیرند، به شرح ذیل می‌باشد:
الف- قبل از نصب: 88/2
ب- بعد از نصب: 86/6
با توجه به نمودار 3 ملاحظه می‌شود که قبل از نصب جاذب انجم مکانی در فاصله 1.5 یک فوتی بین گرنده و شونده در مجاورت 7 کلنی باشد، بنابراین جاذبیت می‌گردد. ولی بعد از کاهش صدا در همان فاصله مکانی عادی امکان پذیر نمی‌باشد.

نتایج حاصل از مقایسه دو نوع جاذب‌ها:
الف- جاذب هایی که دارای فرش‌گذاری بیکان و ضخامت متفاوت
و 2 سانتی‌متر می‌باشند، جاذب با ضخامت یک‌سانتی‌متر در فاصله 50 تا 200 هرتز و ضخامت ۵ سانتی‌متر در فاصله 5 تا 20 هرتز داشت.
ب- جاذب هایی که فرش‌گذاری متفاوت و ضخامت نرمالی بیکان دارد (حدود 2 سانتی‌متر) جاذب با فرش‌گذاری کمتر کاهش بیشتری را در فاصله 50 تا 200 هرتز داشت.

بحث و تالیف

1- تأثیر کاهش صدا بر فشار

Sound Pressure Level = 20 Log \(\frac{P}{P_0} \)

پرده در مسیر دمای اندازه‌گیری شده در صورت برابر

با توجه به لیست شماره 13، 20 دسیبل باشد شکار صوت برابر دوپینه میکروباسکال‌ها و

2- تداخل صدا در مکانی

با توجه به فاصله گرنده و شونده، تراز تداخل صدا در مکانی